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Symmetric and asymmetric solitons in twin-core nonlinear optical fibers

B. A. Malomed,* 1. M. Skinner, P. L. Chu, and G. D. Peng
School of Electrical Engineering, University of New South Wales, Sydney 2052, Australia
(Received 22 November 1994; revised manuscript received 6 November 1995)

Static soliton states in twin-core nonlinear optical fibers are examined using an improved variational ap-
proximation: the soliton’s width is an additional varying parameter, together with the ratio of the energies in,
and the phase difference between, the two cores. For the symmetric coupler, results agree well with numerical
ones; in particular, the bifurcation between symmetric and asymmetric solitons is shown to be slightly sub-
critical. For the asymmetric coupler, the control parameters are the difference between the cores’ dispersion
coefficients and the phase velocity mismatch. Soliton states in the asymmetric coupler show a strong and easily
controlled bistability. The soliton exists for some energies even when one of the cores has normal dispersion.

PACS number(s): 42.81.Dp, 42.81.Qb, 42.65.Tg, 03.40.Kf

I. INTRODUCTION

Since the pioneering works by Jensen [1] and Maier [2],
twin-core nonlinear fibers (couplers) have been one of prior-
ity topics in fiber optics research. These couplers are ex-
pected to find important applications in photonics, e.g., as
all-optical switches [3], and they give rise to a number of
challenging physical problems. Many works analyzed soliton
dynamics in models of the nonlinear couplers (see, e.g., the
review [4]), although they have not yet been observed ex-
perimentally.

More recently, there have appeared detailed analyses of
static properties of solitons in the twin-core fiber. First of all,
it was noted [5,6] that a symmetric soliton, i.e., one having
energy equally divided between the cores, becomes unstable
when its energy exceeds a certain critical value (see also Ref.
[7]); it may be pertinent to mention that this instability has
some similarity to the known instability of certain types of
solitons in models of the single-core birefringent optical fi-
ber, which are based on a pair of the nonlinear Schrodinger
(NLS) equations with a nonlinear coupling [8]. Next [9], it
was pointed out that this instability gives rise to a bifurca-
tion: a pair of new, stable asymmetric solitons (symmetric
with respect to each other) appears when the symmetric state
loses its stability. Later [10—12], this bifurcation was ana-
lyzed in detail by means of numerical methods. In Ref. [9],
the bifurcation was considered analytically, using essentially
the same variational approximation that was employed in
Ref. [6] for analysis of the soliton’s switching in the coupler.
As a result, a so-called forward bifurcation was predicted,
when the asymmetric stable states appeared exactly at the
point where the symmetric state lost its stability. On the other
hand, looking at the bifurcation diagram obtained numeri-
cally in Ref. [12], one notices that, strictly speaking, this is a
backward (subcritical) [13] bifurcation: the new stable asym-
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metric states appear at a value of the soliton’s energy slightly
smaller than that at which the symmetric soliton becomes
unstable, and there is a bistability over a tiny interval of
energies above the bifurcation (forward and backward bifur-
cations are analogous to classical phase transitions of the
second and first order, respectively).

In all these works, the twin-core fiber was assumed abso-
lutely symmetric. However, fabrication of asymmetric cou-
plers is quite feasible too, and, accordingly, analysis of static
soliton configurations in the asymmetric couplers is also of
interest, both in itself and for applications. Generally, there
are two different ways to produce an asymmetric dual-core
fiber: to make diameters of the two cores different, or, keep-
ing their effective cross section areas equal, to deform them
differently. The model to be considered in the present work
will, primarily, assume the latter mode of the asymmetry.

In this work, we develop a modified analytical approach
to analyze the soliton configurations, and, especially, their
bifurcations in symmetric and asymmetric couplers. This ap-
proach is based on an improvement to the variational ap-
proximation used in Refs. [6] and [9]. Therein, the shape of
the soliton was assumed fixed, and the only variational pa-
rameters were the division of the soliton’s energy and the
relative phase between the two cores. In our approach we
introduce the soliton’s width as a third variational parameter.
We show that this amendment to the variational approxima-
tion, rendering the wave forms more flexible, dramatically
improves agreement between the analytical and numerical
results. In particular, we find that the approximation identi-
fies the bifurcation point fairly close to the known exact
value [10], and, in accord with the numerical findings men-
tioned above, the bifurcation proves to be a backward one,
with a narrow bistability region attached to it.

After testing the improved analytical approximation on
the known case of the symmetric coupler, we proceed to the
new case of the asymmetric twin-core fiber. The asymmetry
includes mismatching the dispersions, mean phase velocities,
and mean group velocities of the two cores, while their ef-
fective nonlinear constants are kept equal. The latter condi-
tion implies that the effective areas of the cores remain equal
(at least, approximately), while the differences in the phase
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velocities and dispersions can be produced by deformation of
the cores (the group-velocity difference will be actually ne-
glected). The mismatch in the dispersion coefficients can be
additionally contributed to by a small difference in the areas
of the cores, which does not essentially affect the nonlinear
coefficients, but may alter the effective dispersion coefficient
of the fiber operating near the zero-dispersion point [14].
Using the same variational approximation, we produce a set
of bifurcation diagrams for the asymmetric coupler, and
these clearly demonstrate effects of the different mismatch
factors. Consideration of the solitonic states in the asymmet-
ric coupler is of obvious interest both from the academic
viewpoint and for applications, as the presence of the addi-
tional parameters should allow one to obtain solitons with
essentially novel properties. In particular, we show that, us-
ing the asymmetry between the cores, it is easy to produce a
broad region of bistability, which may find use in optical
switching and other applications. In this relation, it is rel-
evant to mention the recent work [15], in which switching
properties of the asymmetric coupler were considered in de-
tail in the cw (continuous-wave, i.e., time-independent) re-
gime. It was shown that the asymmetry may help to reduce
the switching power, which is of direct interest for the appli-
cations.

It is also interesting to consider the case when the two
cores in the asymmetric coupler are so widely different that
their dispersion coefficients have opposite signs; i.e., one

core exhibits anomalous dispersion, while the other one has

normal dispersion (of course, in this case our assumption of
the equal nonlinear coefficients becomes a serious technical
limitation). Using our approximation, we consider this case
too. We show that, above a certain value of the soliton’s
energy, the two coupled cores with opposite dispersions can
support a soliton, which is an essentially novel result (in this
work, we do not consider dark solitons).

The paper is organized as follows. The mathematical
model of the coupler is presented in Sec. II, where we detail
our analytical approximation. In Sec. III, we employ this
approximation for the symmetric case, and compare the re-
sults, when possible, with known numerical data. In Sec. IV,
new results for the asymmetric couplers are displayed. In
Sec. V, we deal with the case when the dispersion coeffi-
cients in the two cores have opposite signs. Concluding re-
marks are collected in Sec. VL.

II. THE ANALYTICAL APPROXIMATION

The asymmetric coupler is described by a system of
coupled NLS equations, which is a straightforward generali-
zation of the well-known system for the symmetric case [4],
as well as of that governing the cw dynamics of the asym-
metric coupler [16]:

4085
iu,+quticu,+3Du,,+|ul*u+Kv=0, (1)
. . 1 2 -
iv,—qu—icv,+ 3Dy, . +|v|*v+Ku=0, 2)

where K is the coupling constant. When writing the equa-
tions in this form, we assume that the effective cross section
areas of the two cores are nearly equal, so that the corre-
sponding effective nonlinear coefficients, determined by the
areas [14], are (approximately) equal too. In this case, the
phase and group velocity differences between the two cores,
measured, respectively, by the parameters g and ¢, can be
produced by different deformations of the two cores. This
implies the same polarization of light in both cores, and that
their birefringence axes are aligned. The deformation of the
cores, affecting their modal structure, also gives rise to a
difference in their dispersion coefficients. Notice that this
difference can be essentially augmented by a relatively small
mismatch in the effective areas between the cores, which
produces a negligibly weak effect on the nonlinear coeffi-
cients. Indeed, since the nonlinear optical fibers usually op-
erate near the zero-dispersion point, at which the terms pro-
duced by the material and waveguide dispersions nearly
compensate each other [14], even a weak change of the latter
term may significantly alter the effective dispersion coeffi-
cient. Note that the phase velocity mismatch between the two
otherwise identical cores was mentioned, but not analyzed,
in Ref. [17].

To translate the velocity differences into explicit z and 7
dependence of the coupling constant, it is convenient to
transform the fields # and v as follows:

1
u(Z,T)EU(Z,T)eXp( —icDy'r+igz+ 5,-621)1—11);
3)

1
U(Z,T)EV(Z,T)eXp(iCDz-IT— igz+ -2—ic202"1z). 4)

As well as Egs. (1) and (2), the transformed equations for the
variables U and V admit a variational representation with the
Lagrangian

L=jj:z(7')d7', )

where the Lagrangian density is

F=K{U*V exp[ —2iQz+ic(D;'+D;") 7]+ UV*exp[2iQz—ic(D; '+ D; ") 7]} + 3i(U*U,— UU})

+3i(V*¥V, = VV) = iD,|U,|* = iD,| V. |*+ 3| U[*+ 3| V[*. (©6)
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Here,
Q=q+3c*(Dy'-D; ") @)

is an effective phase velocity mismatch.

The crucial step in application of the variational approxi-
mation [6,18] is the choice of an ansatz, i.e., a trial wave
form, for the soliton. Here, we use the same general ansatz
that was proposed for the two-component soliton in the cou-
pler in Refs. [9] and [17] (this ansatz was also employed for
analysis of the vector-soliton dynamics in the model of a
birefringent single-core fiber in Ref. [19]):

,
U=A cos( 0)sech(a—)exp[i(¢+ ) +ibr]; (8

r
V=A sin( 0)sech(;) expli(p— ) +ib7?] 9)

(in Ref. [9], the amplitudes were defined as A/ \Ja, but this
difference does not change anything in the analysis below).
Here, A is the overall amplitude, # measures distribution of
energy between the two cores, a is the soliton’s width, which
is assumed to be the same for both cores, ¢ and ¢ are,
respectively, the common and relative phases of the two
components, and b is the well-known chirp parameter [18].

Notice that, with regard to the transformation (3) and (4),
the ansatz based on Egs. (8) and (9) implies that, in terms of
the original notation [see Egs. (1) and (2)], the two compo-
nents of the soliton will have the frequency difference
c(Dy'+D;"). However, it is natural to assume the absence
of the frequency difference just in terms of the transformed
variables U(z,7) and V(z,7). Indeed, we are interested in
consideration of the soliton with no walkoff between its
components, and this is in terms of U and V that the walkoff
is proportional to their relative frequency.

The standard procedure assumes all the parameters in the
ansatz [Egs. (8) and (9)] to be arbitrary functions of z. Then,
one inserts the ansatz into the Lagrangian density [Eq. (6)]
and integrates it over the variable 7 to arrive at an effective
Lagrangian [see Eq. (5)], which depends on the free param-
eters of the ansatz and their first derivatives with respect to
z. Next, one obtains the Euler-Lagrange variational equa-
tions from this Lagrangian, and these lead to a system of
coupled ordinary differential equations that, for a sufficiently
smart choice of the underlying ansatz, furnish a good ap-
proximation to the full dynamics of the soliton system.

In Ref. [9], the chirp parameter b was dropped and the
width a was assumed constant, in order to obtain a simple
dynamical system (which actually proves to be equivalent to
the one considered earlier in Ref. [6]) amenable to a fully
analytical consideration. Although this system correctly indi-
cated gross features of the soliton’s statics and dynamics in
the coupler, it was oversimplified; that is why it failed to
predict essential details. In particular, in the static regime this
simplest approximation correctly showed the existence of the
bifurcation destabilizing the symmetric soliton state (in the
symmetric coupler), but did not show the bifurcation to be
slightly subcritical. Agreement between the approximate
value of the soliton’s energy at this bifurcation point and the
known exact value was not satisfactory.
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The only difference between the approximation developed
in Ref. [9] and our approach is that, instead of the width a of
the soliton being a predetermined constant, we now allow it
to vary along with two other parameters, viz., 6 and ¢. As
will be shown below, this simple improvement keeps the
system analytically tractable and, simultaneously, it dramati-
cally improves the results.

For dynamical regimes (switching characteristics of the
coupler, etc.), the full system of the variational equations
corresponding to the ansatz based on Egs. (8) and (9) was
considered recently in Ref. [20]. The ordinary differential
equations were solved numerically, and the results were
compared in detail with a direct numerical solution of Egs.
(1) and (2) (obtained by means of the beam-propagation
method). A very good accord over a broad parametric region
was found.

In the static situation, one seeks solutions to Egs. (9) and
(10) with constant (z independent) a, ¢, and 6, while the
common phase ¢ may be a linear function of z. In this case,
the variational approximation produces a system of algebraic
(rather than differential) equations. Moreover, it is known
that the chirp parameter is always zero in the static case [18].
This simplifies the situation, and a fully analytical consider-
ation is possible.

Thus one arrives at the following static equations pro-
duced by the variation, respectively, of ¢, 6, and a:

sin(2 @)siny=0; (10)

DI—DZ
—az—-—+2Q=0; (11)

2E
——c0s(26)— 2k cot(20)cosy — 3

3a

1
a l= {1— 3 sin?(2 0)}(D100320+D23in20)”1, (12)

where x=2(¢+ Qz), the parameter E is half the energy of
the soliton,

EE%fj:(lU]2+]V|2)dT=A2a, (13)

and the renormalized coupling constant is

__ (w2)e(Dy'+D; Na
"=Ksinh[(w/2)c(1);‘ +D; Hal’ 14

Notice here that since the renormalized coupling constant
« explicitly depends upon a according to Eq. (14), it, too,
should be varied in a. This was not done above because,
from examination of Eq. (14), it follows that the renormal-
ization of the coupling constant and, hence, the variation of
x can be neglected if

™ -1 -1
Fe(D7 ' +Dy Ha<1,

i.e., if the group velocity mismatch ¢ is sufficiently small.
This is assumed below to be the case, and is quite realistic,
since the difference between the group velocities is usually
much smaller than the corresponding mismatch in the phase
velocities; i.e., ¢ may be neglected, but g must be retained in
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Egs. (1) and (2). Hence, also, in subsequent sections K and
g remain, respectively, the effective coupling constant and
the phase-velocity mismatch, instead of x and Q.

Finally, variation with respect to the overall amplitude A
(more convenient technically is to perform, instead, variation
in E) produces the expression for p=d¢/dz, which gives a
shift of the carrier wave’s propagation constant:

S D cos’6+D '20+2E1 1'220
p= g;f( 1€0S »sin“ @) 3 2sm( )

+ k sin(2 f)cosy. (15)
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Note that this is decoupled from the other equations.

It immediately follows from Eq. (10) that either
sin(26)=0 or siny=0. The former solution implies that all
the energy resides in a single core [see Egs. (8) and (9)].
Obviously, this solution is extraneous. The latter solution,
siny=0, implies that cosy==1. According to the numerical
findings of Ref. [11], in the symmetric case the solutions
corresponding to cosy=—1 are almost everywhere unstable,
except for a narrow range of low energies. Therefore, in this
work we consider only the case cosy=+1. Substituting this
and Eq. (12) into Eq. (11), we obtain

1E2 1—(1/2)sin*2 6 ”g 1 D — DA 1—(1/2)sin*26 \?  o=0 6
37 Djcos’0+ D,sin’ §oos(20)~ 73 (D1=Dy) D cos? 6+ D,sin’ ¢ 0 +0=0. (16)
r
This is the basic equation of our analytical approximation for , 9
the static solitons in the coupler. Ej =4—\/3K , (18)

To conclude this section, notice that the simplest approxi-
mation, considered in Refs. [9,21], produced equations that
were the same as analogous equations for the cw coupling
(the analogy of the soliton switching with the cw case was
discussed in detail in Ref. [22]). Now, by making the width
of the soliton a parameter of variation, the equations become
essentially different from those for the cw case. The reason is
that previously the postulated width was fixed, independently
of the value of 4, while now it is allowed to depend on 6.

In this relation, it is pertinent to note that a subcritical
bifurcation is known [16] to be a feature of the cw modes of
optical couplers in the case when the nonlinearity in the cou-
pler is saturable rather than cubic (Kerr). Actually, the varia-
tional equations that will be derived in the present work for
the symmetric coupler on the basis of the soliton ansatz, can
be formally represented as cw equations for a model with a
special nonlinearity, much more complicated than the cubic
one [21].

III. SYMMETRIC COUPLER REVISITED

In order to test the validity of using Egs. (10), (11), and
(12) to describe static soliton configurations, we first apply
them to the symmetric case D;=D,=1, and c=¢g=0. Pre-
vious analytical results were obtained in Ref. [9] in the ap-
proximation in which the soliton’s width a was not used as a
variational parameter; i.e., Eq. (12) was absent. Extensive
numerical results for soliton states in the symmetric coupler
were given in Refs. [10—12], making it possible to assess the
accuracy of the present analytical approximation.

In the symmetric case, Eq. (16) simplifies to

2

E 1
cos(2 0)[§?Sin(2 e)( 1— Esin2(2 o)) - 1} =0. (17)

Elementary analysis reveals that, for 0O<E<E,, where E is
given by

the only solution is the symmetric one, cos(26)=0, with
equal energies in both components. At the point at which the
soliton’s energy attains the value E, there appcar asymmet-
ric solutions with cos(26)==*1/ \/5 . When the energy further
increases to the value E,, given by

E;=6K, (19)

which is only slightly larger than E, the backward (subcriti-
cal) bifurcation occurs, rendering the symmetric solution
cos(26)=0 unstable.

For the symmetric coupler, the whole bifurcation diagram
produced by Eq. (17) is shown in Fig. 1. Therein, the solid
and dashed curves depict stable and unstable branches, re-
spectively. Although we did not analyze stability of different
solutions directly, one can readily distinguish between the
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FIG. 1. The bifurcation diagram for the symmetric coupler pro-
duced by Eq. (17). Here, and in other figures, the solid and dashed
curves correspond, respectively, to stable and unstable solutions,
and the thick dots are used to highlight the bifurcation points (tran-
sitions between stable and unstable solutions).
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FIG. 2. An alternative bifurcation diagram for the symmetric
coupler. This diagram, obtained by means of the improved varia-
tional method, should be compared with Fig. 11 from Ref. [12]
obtained by numerical methods.

stable and unstable branches, using standard theorems of the
bifurcation theory [13]. In describing the bifurcation (insofar
as it depends on the soliton’s energy), we find it most physi-
cally meaningful to use the quantity cos(26), which, accord-
ing to Egs. (8) and (9), directly characterizes distribution of
the soliton’s energy between the two cores. This quantity is
used as the vertical coordinate in Fig. 1. Notice that it can be
defined independently of the describing variables:

EV_E®

cos(26)= TOFED"

where EV) is the energy in the jth core.

Seeking the value E, at which the backward bifurcation
occurs, we have found above that E,= \/ﬁ , whereas the
known exact value is 4VK/3 [5,6,12]. It follows from here
that the relative error in locating the bifurcation value of the
energy by means of the modified variational approximation
is =5%. Note the dramatic improvement in comparison
with the simplest approximation employed in Ref. [9], which
gave E,= \/§E , i.e., the relative error of 25%. The bifurca-
tion diagram produced by the variational technique and
shown in Fig. 1 agrees with the numerical results reported in
Ref. [12] in showing that the region of bistability extends
over a very narrow range of energies.

For extended comparison with the results of Ref. [11], we
present another version of our bifurcation diagram in Fig. 2,
where we use exactly the same coordinates as in [11]: the
soliton’s energy E and the wave-number shift p; see Eq.
(15). This choice of the coordinates allows immediate com-
parison with Figs. 1 and 11 of Ref. [12]. The difference
between variational and numerical results can be spotted
only in a neighborhood of the bifurcation, and even there it is
not more than 5%. Thus, we conclude that the analytical
approximation based on Eq. (15) is reliable. In the next sec-
tion we apply it to the asymmetric coupler.
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IV. THE ASYMMETRIC COUPLER

The general form of Eq. (16) allows consideration of the
asymmetric case D;# D, and Q#0. To this end, it is con-
venient to use the remaining scaling invariance of the under-
lying equations to set

D,+D,=2, (20)
which is true for the symmetric case, and to define the pa-
rameter

1

AEE(Dl“Dz)’ 2n

which measures the relative mismatch in the dispersion be-
tween the cores. Recall that the parameter g, defined as per
the underlying equations (1) and (2), measures the phase
velocity mismatch. In what follows below, we consider ef-
fects generated by the two mismatches, ¢ and A, separately.
In this relation, it is relevant to recall that, as explained in the
Introduction, the differences in the phase velocity and in the
dispersion coefficient between the cores can be separately
induced by deformation of the cores keeping their effective
areas equal, and by a small difference in the areas without
deformation.

Figure 3 displays bifurcation diagrams produced by Eq.
(16) with A=0 and different values of ¢: 0.01, 0.1, and 1.0.
The deformation of the symmetric diagram of Fig. 1 under
the action of the small phase velocity mismatch that gives
rise to Fig. 3(a) is exactly the generic type of the deformation
expected when a small symmetry-breaking perturbation lifts
the degeneracy of the symmetric case [13].

Figure 4 illustrates the effect on the bifurcation of the
dispersion mismatch A in the absence of the phase velocity
difference (i.e., at g=0). It is apparent that the deformation
of the symmetric diagram of Fig. 1, induced by a small A in
Fig. 4(a), is of the same type as that shown in Fig. 3(a).
However, unlike the case of the mismatched phase velocity,
increasing the value of A keeps three bifurcation points on
the diagrams. A trend of the bifurcation diagram with further
increase of A is discussed in the next section.

The most remarkable feature of the diagrams for the
asymmetric case is the well-pronounced bistability, which
can find use in optical switches and other applications. Un-
like the symmetric case, when bistability occurs for very
restricted values of the energy (Fig. 1), in the asymmetric
case the bistability may be robust, and it can be easily con-
trolled by means of the parameters determining the asymme-
try between the cores. A tristability is also possible [see Figs.
3(a) and 4(a)], but it exists only in a restricted range of
energies.

V. THE CORES WITH OPPOSITE DISPERSIONS

A natural generalization of the above analysis is to con-
sider the coupler with the two cores so different that they
have opposite signs of their dispersion coefficients. Of
course, in this case the assumption of the equal nonlinear
coefficients is a serious limitation; however, it seems plau-
sible that the qualitative results to be reported below will
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FIG. 3. The bifurcation diagrams for the asymmetric coupler
with A=0 (no dispersion mismatch): (a) Q=0.01; (b) 0=0.1; (c)
0=1.0.

remain relevant if one takes into account the difference in the
nonlinear coefficients.

To be specific, we assume that D ;>0 (anomalous) and
D,<0 (normal). According to Egs. (20) and (21), in this
case A=1. A bright soliton cannot exist in an isolated fiber
with normal dispersion (D <<0). However, the coupling be-
tween the two cores enables a soliton having components in
both cores. This is clearly seen in Fig. 5, where we present
increasingly negative values of D, (i.e., increasing values of
A>1). All the cases shown in Fig. 5 have ¢ =0 to highlight
the effect of competition between the opposite dispersions.
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FIG. 4. The bifurcation diagrams for the asymmetric coupler
with Q=0 (and no phase velocity mismatch 0=0): (a) A=0.01;
(b) A=0.1; (c) A=0.5.

In Fig. 5, we see two portions of the solution, and two
different thresholds. For energy exceeding the larger thresh-
old value, there are stable and unstable solitons. Naturally,
the stable branch is that with more energy in the core with
the anomalous dispersion. For energies below a different,
lower threshold value, a second pair of stable and unstable
branches is found, which corresponds to more energy being
in the normal-dispersion core. Examination shows that, for
this solution, not only the energy but also the width a is
small. Normally, for a bright soliton, the width increases as
the energy decreases. The failure of the solutions found be-
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FIG. 5. The bifurcation diagrams for the coupler with the oppo-
site signs of the dispersion in its two cores, i.e., with A>1 (no
phase velocity mismatch): (a) A=1.01; (b) A=1.1; (c)A=2.0.

low the lower threshold to meet this natural condition sug-
gests that the ansatz adopted in the present work is not a
relevant approximation for those solutions. Exactly what
these badly approximated solutions correspond to remains
uncertain; it may be that the solutions are actually spurious.

Increasing |D,| gives rise to a natural trend also clearly
seen in Fig. 5: the soliton needs more energy to support
itself, and increasingly shifts into the core with the anoma-
lous dispersion. Also, the region in which the (presumably)
spurious solution exists becomes more restricted.

q/K o

FIG. 6. The domains on the parametric plane (A,q) character-
ized by different numbers of the bifurcation points (the numbers are
shown by large digits) as obtained analytically from Eq. (16). At the
points shown by the large dots, the correctness of the prediction was
checked against full bifurcation diagrams (some of those diagrams
are shown above in Figs. 3—5; some dots are not shown to avoid
overlapping with other features). The dashed horizontal lines are
asymptotes of some of the domain borders.

VI. CONCLUSION

In this work, we have demonstrated that the improved
version of the variational technique, based on adding the
soliton’s width to the set of the variational parameters, re-
mains fully analytically tractable and, simultaneously, it pro-
duces bifurcation diagrams for the solitons in the model of
the symmetric coupler that are in a fairly good agreement
with numerical results. In particular, the bifurcation is cor-
rectly predicted to have the backward (subcritical) character.
It is also noteworthy that this approximation produces ana-
lytical results essentially different from those for the cw
(time-independent) modes.

For the asymmetric coupler, our approach has yielded
new results. That strong and robust bistability can be easily
obtained and controlled in the asymmetric coupler may be of
practical interest for applications to photonics.

Finally, we have considered the coupler in which one core
shows anomalous dispersion, while the other is normal. We
have demonstrated that a two-component soliton with a suf-
ficiently large energy, which helps it keep closer to the
anomalous-dispersion core, can exist in this arrangement too.

The results obtained in the present work are summarized
in the phase diagram displayed in Fig. 6, in which, on the
parametric plane (A,g), we show borders between domains
with different numbers of the bifurcation points, as obtained
by direct analysis of Eq. (16). This diagram possesses an
obvious symmetry with respect to inversion (simultaneous
change of signs of the two coordinates), which simply im-
plies transposition of the two cores.
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